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Detecting nonstationarity and state transitions in a time series
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Department of Electrical Engineering, University of California, Los Angeles, California 90095
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One cause of complexity in a time series may be due to nonstationarity and transience. In this paper, we
analyze the nonstationarity and transience in a number of dynamical systems. We find that the nonstationarity
in the metastable chaotic Lorenz system is due to nonrecurrence. The latter determines a lack of fractal
structure in the signal. In 1/f a noise, we find that the associated correlation dimension are local graph dimen-
sions calculated from sojourn points. We also design a transient Lorenz system with a slowly oscillating
controlling parameter, and a transient Rossler system with a slowly linearly increasing parameter, with param-
eter ranges covering a sequence of chaotic dynamics with increased phase incoherence. State transitions, from
periodic to chaotic, and vice versa, are identified, together with different facets of nonstationarity in each
phase.
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I. INTRODUCTION

Almost all existing linear and nonlinear time series ana
sis techniques assume that the time series under investig
is stationary. However, many time series occurring in g
physics, physiology, finance, etc., are nonstationary.
nonstationarity may be attributed to slow drift of the sy
tem’s parameters during a measurement period, a chan
environment, etc. The existence of nonstationarity can ca
the interpretation of the results of many data analysis m
ods, especially those based on chaos theory, to be prob
atic. For example, it was once thought that an estimated p
tive Lyapunov exponent or entropy, or a finite noninteg
correlation dimension would suffice to indicate that the tim
series is chaotic. If this were true, then one would have
conclude that 1/f a noise, 1,a,3, is chaotic, since it pro-
duces a positiveK2 entropy@1# and a finite noninteger cor
relation dimension,D52/(a21) @2#. We now understand
that such a conclusion is incorrect, since the 1/f a process is
just noise. Hence, simple and efficient methods capable
detecting nonstationarity in a time series would be valua
to researchers from a diversity of fields.

This subject has attracted much attention recently. P
posed methods include recurrence plots@3# and recurrence
quantification analysis@4#, space-time separation plots@5#,
and their associated probability distributions@6#, metady-
namical recurrence plot@7#, a statistical test using the infor
mation of the distribution of points in the reconstruct
phase space@8#, a cross-correlation sum analysis@9#, and
nonlinear cross prediction analysis@10#. Most of these meth-
ods are based on quantifying certain aspects of the ne
neighbors in phase space. It has been recently shown@11#
that the nearest neighbors in phase space can be broken
into true recurrence points and sojourn points. According
these two types of recurrence points define two types of
currence times. Two convenient algorithms for detect
transience and nonstationarity in a time series have been
veloped based on the second type of recurrence times. In
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paper, we shall first more fully explore the capabilities~and
possibly limitations! of those methods by applying them to
number of interesting nonstationary time series, namely,
metastable chaotic Lorenz system, 1/f a noise, a transient Lo-
renz system with a slowly oscillating controlling paramet
and a transient Rossler system with a slowly linearly incre
ing parameter, with parameter ranges covering a sequenc
chaotic dynamics with increased phase incoherence@12#. We
shall show that nonstationarity in the metastable chaotic
renz system and 1/f a noise is due to nonrecurrence, and e
plore the consequences of nonrecurrence. In the transien
renz and Rossler system, we shall show how the met
identifies state transitions, from periodic to chaotic, and v
versa, and characteristics of nonstationarity in each phas

The remainder of the paper is organized as follows.
Sec. II, we briefly review recurrence time statistics for det
ministic chaos in dissipative systems and the two algorith
for the detection of nonstationarity and bifurcations. In S
III, we detect nonstationarity in the metastable chaotic L
renz system and in 1/f a noise. In Sec. IV, we design th
transient Lorenz and Rossler systems to simulate the s
tion common in experiments where one wishes to zero in
bifurcations, and analyze various facets of nonstationarity
these systems. For simulating the scenario of scannin
wide range of parameters, we refer to the transient logi
map @4,11# and the transient Lorenz system@13,14#. These
four systems provide easy-to-implement examples for det
ing state transitions in dynamical systems. Finally, we g
conclusions in Sec. V.

II. RECURRENCE TIME STATISTICS FOR DISSIPATIVE
CHAOTIC SYSTEMS AND DETECTION OF

CHANGES IN DYNAMICS

Most methods for detection of nonstationarity are bas
on quantifying features of nearest neighbors. The nea
neighbors are also called Poincare recurrence points, and
further divided into two classes@11#, with two types of re-
currence times.

Given a scalar time series$x( i ),i 51,2,...%, we first con-
struct vectors of the form@15#: Xi5†$x( i ),x( i 1L),...,x@ i
©2001 The American Physical Society02-1
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1(m21)L#%‡, with m being the embedding dimension an
L the delay time.$Xi , i 51,2,...,N% then represents certai
trajectory in am-dimensional space. In this paper, we sh
always normalize the time series into the unit interval@0, 1#
before subsequent analysis. Next, we arbitrarily choose a
erence pointX0 on the reconstructed trajectory, and consid
recurrences to its neighborhood of radiusr :Br(X0)5$X:iX
2X0i<r %. The subset of the trajectory that belongs
Br(X0) is denoted byS15$Xt1

,Xt2
,...,Xti

...%. The elements

of the setS1 are the Poincare recurrence points. UsingS1 ,
we define the Poincare recurrence time as the element$
T1( i )5t i 112t i , i 51,2,...%. For later convenience, we ca
the elements of$T1( i )% the recurrence times of the first typ

Sometimes we may haveT1( i )51 ~for continuous-time
systems, this means 1 unit of sampling time!, for some i.
This corresponds to bothXti

andXti11 belonging toS1 . For
deterministic continuous-time systems with fixed~small!
sampling time, if the radiusr of Br(X0) is not too small, then
we can have a sequence such asXti

,Xti11 ,...,Xti1k belong-

ing to S1 , with k@1. This is shown schematically in Fig. 1
We call the pointsXti11 ,...,Xti1k ~excludingXti

) ‘‘sojourn

points.’’ When k@1, each such sequence of points effe
tively represents a one-dimensional~1D! set. For maps or
continuous-time systems with smallr, the number of sojourn
points are negligible. Hence, sojourn points form a
~empty or almost empty! set. We now remove these poin
from S1 and denote the remaining points ofS1 by S2
5$Xt

18
,Xt

28
,...,Xt

i8
,...%, which in turn define a time sequenc

$T2( i )5t i 118 2t i8 , i 51,2,...%. We call the elements ofS2 re-
currence points of the second type, andT2( i ) recurrence
times of the second type.

For dissipative chaotic systems, we have shown that w
fixed r, the distribution of$T2( i )% is exponential, due to the
memoryless property of a chaotic system, and the mea
T1( i ) and T2( i ) are both related to the information dime
sion d1 of the attractor by simple scaling laws@11#,

T̄1~r !;r 2d1 ~1!

and

FIG. 1. A schematic showing the recurrence points of the s
ond type ~solid circles! and the sojourn points~open circles! in
Br(X0).
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T̄2~r !;r 2d18 ~2!

with d185d1 for discrete maps and continuous-time syste
with small r ~when the sojourn points form a 0D set!, and
d185d121 for continuous-time systems with larger ~when
the sojourn points form a 1D set!. For a periodic signal,
T2( i ) simply gives an estimation of the periodicity of th
signal.

Based on an observation that, due to nonstationarity, s
cessive recurrence times of the second type will, on aver
be changing with time, we have designed two ways@11# of
detecting nonstationarity and state transitions:

Algorithm 1: Partition a long-time series into~overlap-
ping or nonoverlapping! blocks of data sets of short lengthk,
and computeT̄2(r ) for each data subset. The length of th
subset is chosen to be short enough so that nonstationar
not a problem for the subset. At the same time, the subs
long enough so thatT̄2(r ) can be reliably estimated. As
rule of thumb, we recommend that the subset contains a
cycles of oscillation, if the motion is oscillatory. One ma
also want to choose a new length for the subset, such ak
or k/2, and check whether the new result remains similar
that when the length of the subset isk. Usually, overlapping
blocks are preferred so that bifurcation can be more ac
rately located. To save computation, however, we do
recommend maximal overlapping~i.e., when adjacent data
subsets differ by only one point!. For nonstationary and tran
sient time series, we expect thatT̄2(r ) will be different for
different blocks of data subsets. This algorithm is best su
for the detection of state transitions in a time series~such as
from chaotic to periodic, or vice versa!, sinceT̄2(r ) simply
estimates the periodicity of a periodic signal.

Algorithm 2: With fixedr, computeT2( j ) for all the ref-
erence points in the entire dataset, wherej denotes thej th
return to the reference point. Nonstationarity is seen wh
T2( j ) varies withj. Since a given region in the phase spa
may be visited by a given trajectory more often than oth
regions, to remove this dependence of visiting frequency
the phase-space location, we perform the following norm
ization. Let the reference point beX0 , andT2( j )@Br(X0)#,
j 51,2,...,N0 , be successive recurrences toBr(X0). We nor-
malizeT2( j )@Br(X0)#, j 51,2,...,N0 , by its mean. This pro-
cedure is applied to all the reference points. Next, we gro
the normalizedT2( j ) together according toj, $T2( j )(Xi), i
50,1,2,...%, and compute the mean of each group,T̄2( j ). For
nonstationary time series,T̄2( j ) will vary with j, while for
stationary time series,T̄2( j ) will have an almost constan
value of 1.

The classification of recurrence points and times into t
types enables us to gain new insights into the structures
recurrence plot~RP! @3,14#, and to design new ways of quan
tifying a RP@14#. Recall that a RP is anN3N array in which
a dot is placed at~i,j! whenever a pointXi on the trajectory is
close to another pointXj . Hence it is clear that sojourn
points will trace out a short vertical~by symmetry, also hori-
zontal! line segment. Collection of sojourn points, henc
gives rise to squarelike textures~or blocks! in a RP. In Sec.

c-
2-2
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DETECTING NONSTATIONARITY AND STATE . . . PHYSICAL REVIEW E 63 066202
III B, we shall show that a RP for 1/f a noise typically exhib-
its such squarelike textures.

III. DETECTION OF NONSTATIONARITY

In this section, we apply Algorithm 2 described in the la
section to detect nonstationarity in the metastable cha
Lorenz system and in 1/f a noise.

A. Nonstationarity in the metastable chaotic Lorenz system

Some chaotic systems are found to exhibit an interes
phenomenon called metastable chaos@16#, or chaotic tran-
sient @17#. Consider the Lorenz system:

dx/dt5210~x2y!, dy/dt52xz1Rx2y,

dz/dt5xy28z/3. ~3!

For R,1, the system has a stable solution at~0, 0, 0!. For
R.1, there are three critical points,~0, 0, 0!, (a,a,R21),
and (2a,2a,R21), wherea5@8/3(R21)#1/2. For R be-
tween 1 andR2'24.74, the two nonzero solutions are stab
and attracting, and forR.R2 , all three critical points are
unstable, and the solution is chaotic. In a range ofR1
'24.06,R,R2 , it is observed that some trajectories te
towards the strange attractor asymptotically, while oth
tend asymptotically towards the stable attracting points. T
former trajectories oscillate irregularly without ever settli
down. Such solutions are known as ‘‘sustained chaos’’@16#.

At R5R0'13.926, a transition occurs@18#. Immediately
aboveR0 there is an ‘‘exceptional’’ set~i.e., a set with mea-
sure zero! of chaotic orbits that oscillate forever. This chao
set is unstable forR betweenR0 andR1 . Its existence, how-
ever, affects what is observed in numerical investigatio
especially forR just belowR1 , since the ‘‘decay time’’ for
orbits near this chaotic set is very long. These predecay
trajectories are called ‘‘metastable chaos.’’ An example
R523.5 is shown in Fig. 2, where we observe that the me
stable chaotic oscillations last more than 1700 natural t
units. With a sampling timedt50.06, this amounts to havin
a time series almost as long as 33104 points for the meta-
stable chaos. We observe that visually metastable cha

FIG. 2. An example of metastable Lorenz chaotic signal.
arrow is drawn to separate the metastable and the decaying pa
the signal.
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signals are quite stationary. Using some criteria for ch
such as phase diagrams and power spectra, we might cla
such metastable chaotic signals as genuine chaotic sig
We apply our tests of stationarity to see whether the me
stable chaos is stationary and whether it is really the sam
the conventional chaos.

We have generated 6 very long metastable chaotic t
series forR523.5 using 6 different initial conditions. Fo
each time series, we retain only the middle 25 000 poi
with sampling timedt50.06. We apply our Algorithm 2 to
analyze these time series. A typicalT̄2( j ) vs j curve is shown
in Fig. 3 as curveA. As a comparison, the result for a tru
chaotic time series corresponding toR528 is also shown as
curve B. For the true chaotic signal, we observe thatT̄2( j )
assumes more or less a constant value of 1, as expe
However, for the metastable chaotic signal,T̄2( j ) varies con-
siderably withj. This indicates that dynamically, the met
stable chaos is nonstationary, though visually it appears q
stationary. While at first sight this result might not be
expected, on a second thought, one is compelled to acce
since the variations in the time series considered here is
timately finite ~i.e., it eventually decays to a stable fixe
point!.

True chaotic attractors are often fractals. The fractality
caused by incessant stretching due to exponential separ
of nearby trajectories, and folding due to recurrence. Hen
we surmise that nonrecurrence implies a lack of genu
fractal structure in the metastable chaotic signals stud
here. To test this hypothesis, we compute the correla
dimension of the signal using the Grassberger-Procaccia
gorithm @19#. Two typical results are shown in Fig. 4, whe
the solid linesA1 andA2 are computed using two differen
metastable chaotic data sets. Four other data sets give re
similar to eitherA1 or A2 . For comparison, the curve for th
chaotic signal atR528 is shown as the dashed curve in F
4. We observe that for metastable chaotic signals, when
thed log10C(r ) vs d log10 r curve has an appreciable platea
~with a suitably chosen delay timeL!, the plateau either
settles at a value of 2, or the curve does not have a plat

While it is unrealistic to check whether all metastab

of FIG. 3. Variation ofT̄2( j ) with j for a metastable chaotic signa
~curve A! and the chaotic signal~curve B!. The scaler used to
generate the figure is 224. Embedding parameters arem54 and
L53. 25 000 points are used in the calculation.
2-3
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J. B. GAO PHYSICAL REVIEW E 63 066202
chaotic signals are nonfractals, we can conjecture that wh
ever a metastable chaotic signal is nonrecurrent for a num
of different scales, it lacks a genuine fractal structure. F
thermore, we surmise that even though the Grassber
Procaccia algorithm gives an appreciable plateau for so
metastable chaotic signals~especially forR just belowR1),
the plateau, which necessarily excludes those scales that
respond to the signals to be dynamically nonrecurrent, wo
be so narrow that it would be destroyed by a tiny amoun
noise.

B. Nonstationarity in 1Õf a noise

1/f a noise is ubiquitous in nature and in man-made s
tems @20,21#. Using 1/f a noise as an example, it has be
demonstrated that the correlation dimension and theK2 en-
tropy measures alone cannot be used to distinguish betw
deterministic chaos and noise@1,2#. In this section, we show
that 1/f a noise is nonstationary, and that the estimated c
relation dimension is simply the local graph dimension of
trajectory corresponding to the sojourn points.

1/f a noise can be obtained through its Fourier represe
tion @1,2#, i.e., by

x~ t i !5 (
k51

N/2

A~vk!cos~vkt i1fk!, i ,...,N,

A2~vk!}vk
2a , ~4!

where vk52pk/NDt and thefk are random uncorrelate
phases. We generate a number of realizations of such
cesses corresponding to different values ofa. Each realiza-
tion is 32 768 points long. To remove possible edge effe
we analyze only the middle 25 000 points. Figure 5 show
typical T̄2( j ) vs j curve ~corresponding toa51.5). We ob-
serve thatT̄2( j ) varies considerably withj, indicating that
the process is not recurrent, and is thus dynamically non
tionary.

Comparing Fig. 5 and Fig. 3 curveA’s, we find that the
variation ofT̄2( j ) with j is less significant for 1/f a noise than

FIG. 4. Correlation dimension calculations for two metasta
chaotic signals~solid lines withm54 andL59 and denoted asA1
and A2) and a true chaotic signal~dashed line withm54 andL
57).
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for the metastable chaotic signal. In some sense, this i
cates that the 1/f a noise is less nonrecurrent on finite scale
This results in an appreciable plateau when the Grassbe
Procaccia algorithm is applied to such processes. We sh
note, however, that the feature of being less nonrecurren
1/f a noise is scale dependent. When a smaller ball of rad
r is used to define neighborhoods, then 1/f a noise is more
nonrecurrent.

The nonrecurrent nature of 1/f a noise can be better appre
ciated by computing a RP. Figure 6 shows an example.
observe that away from the main diagonal, the plot is ba
cally blank, indicating lack of recurrence for the signal. We
a smallerr for the ball used, then the plot would be almo
completely blank except just near the main diagonal. The
shown in Fig. 6 is simply a result of the finiteness of the s
for the ball. This cutoff scale corresponds to the ‘‘knee
observed in the dimension calculation of such processes@2#.
We also observe that the structure of the RP is basic
squarelike, indicating that the majority of the Poincare rec
rence points are just sojourn points. Modifying Fig. 1, w
can obtain a schematic shown in Fig. 7, showing that wh

e FIG. 5. Variation ofT̄2( j ) with j. The scaler used to generate
the figure is 224. Embedding parameters arem56 and L51.
25 000 points are used in the calculation.

FIG. 6. A recurrence plot for a realization of 1/f a noise with
a51.5. The embedding parameters arem56 andL51. The scaler
used is 224.
2-4
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DETECTING NONSTATIONARITY AND STATE . . . PHYSICAL REVIEW E 63 066202
ever a ‘‘recurrence’’ occurs, the sequence of sojourn po
is fairly long, due to finiteness of the size of the ball. Hen
what the Grassberger-Procaccia algorithm estimates is
fractal dimension of such an irregular trajectory. Being a
to easily estimate the key parameter for 1/f a noise should be
considered a merit of the Grassberger-Procaccia algorith

An implication of the above results is that if an efficie
algorithm for the computation of the information dimensi
can be developed based on Eq.~2!, then a dimension calcu
lation may suffice to indicate whether a signal is chaotic
not. By efficient we mean that the size of the data set u
for this purpose should be not much larger than that nee
for the Grassberger-Procaccia algorithm. This is left to fut
work.

We also note that if one finds the signal under study
nonstationary and belongs to 1/f a noise, the next step in th
analysis of the time series may be to conduct multifrac
analysis of the signal, to determine whether the signa
mono- or multifractal, and how intermittent the signal is. S
Ref. @22# for an introductory account of multifractals~struc-
ture function technique and singular measures!.

IV. DETECTION OF BIFURCATIONS

In this section, we design the transient Lorenz syst
with an oscillating parameter and the transient Rossler
tem with a slowly linearly increasing parameter, and stu
state transitions in these systems using our Algorithm
These systems are specifically designed to simulate a s
tion common in experiments where one wishes to zero in
bifurcations.

A. State transitions in the Lorenz system

Following Trullaet al. @4#, Iwanski and Bradley designe
a transient Lorenz system. The system is obtained by i
grating Eq.~3! with a time step of 0.01 and incrementing th
parameterR from 28.0 to 268.0 by 0.002 at each integrati
step. The stationary Lorenz system~corresponding to fixed
R! has periodic windows at 99.524,R,100.795, 145,R
,166, andR.214.4. This system has been carefully stud
using our Algorithm 1@14#. It is shown that the method

FIG. 7. A schematic showing the recurrence points of the s
ond type~solid circles! and the sojourn points~irregular curves! in
Br(X0) for 1/f a noise.
06620
ts
,
he
e

.

r
d

ed
e

s

l
is
e

s-
y
.
a-
n

e-

d

correctly locates the bifurcation points, and also offers a w
of explaining why sometimes there are false indications
bifurcations.

Sometimes an experimentalist is most interested in lo
ing a bifurcation point for a controlling parameter. This e
perimentalist would like to fix the parameter just before a
after that bifurcation point, yet is unable to, due to fluctu
tions in the equipment and environment. The parame
sometimes becomes larger than the bifurcation point, so
times smaller; overall, it more or less oscillates. This pictu
suggests that we design a transient Lorenz system in
way: integrate the Lorenz system of Eq.~3! with a fourth-
order Runge-Kutta method and a timestep of 0.01, with
parameterR( i ) at stepi being

R~ i !514512 sin~2p i /6000!1h~ i !, ~5!

where h( i ) is an uncorrelated Gaussian noise with ze
mean and standard deviation 0.05. A time series of len
12 001 points thus obtained is shown in Fig. 8~a!. We ob-
serve that visually the time series is quite stationary, si
the amplitude of the signal is more or less a constant. In
time interval considered, the parameter exactly oscillates
cycles, as shown in Fig. 8~b! curve A. Note the curve is
blurred due to a random fluctuation.

One might expect that bifurcations occur at time insta
30, 60, and 90. This occurs if one integrates Eq.~3! with a
fixed R. Re-examining Fig. 8~a!, we notice that if there are
transitions, then those transitions occur later than the t
instants of 30, 60, and 90. This implies that transitioni
from an oscillatory phase to a chaotic phase, and vice ve
requires time. To correctly locate the transition points,
computeT̄2(r ) on time series data within episodic window
consisting of 1000 consecutive points. Sequential windo
are shifted by 10 points~thus overlapping by 990 points!,

c-

FIG. 8. ~a! the transient Lorentz signal;~b! Parameter variation

~curveA! and variation ofT̄2(r ) with time. The embedding param
eters arem53 andL510. The scaler used is 224.
2-5
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J. B. GAO PHYSICAL REVIEW E 63 066202
giving a total of 1101 values forT̄2(r ). Figure 8~b! curveB
shows the variation ofT̄2(r ) vs time. We observe severa
interesting features: the variation ofT̄2(r ) roughly consists
of two cycles, corresponding to the two cycles of the para
eter variation; the time of transitions occur later than tim
instants of 30, 60, and 90. Due to nonstationarity, neither
two chaotic nor the two oscillatory phases are identical;
side each chaotic phase, there are wide variations, and v
tions inside the oscillatory phase, though much smaller,
still appreciable, indicating nonstationarity of the signal.

Note that these results are quite robust with respec
changes in the embedding parameters, the size of the
and the length of the data subset.

B. State transitions in the Rossler system

The Rossler system takes the form@23#:

dx/dt52~y1z!, dy/dt5x1ay, dz/dt5b1z~x2c!.
~6!

The x and y equations are equivalent to those of a line
damped harmonic oscillator. All the nonlinearity comes fro
the x2z term in the third equation. Following Farmeret al.
@12#, we chooseb50.4 andc58.5. Four chaotic attractor
corresponding toa50.15, 0.18, 0.21, and 0.30 are shown
Figs. 9~a!–9~d!, respectively, together with their power spe

FIG. 9. Phase diagrams and power spectra for Rossler attrac
A, B, C, andD denote parameter values ofa50.15, 0.18, 0.21, and
0.30, respectively.
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tral densities~PSD!, E( f ). @See also Ref.@12# for phase
diagrams and PSD’s for attractors corresponding toa
50.17, 0.19, and 0.20#. The attractor corresponding toa
50.15 has a repeller near the origin, and is usually called
simple Rossler attractor. We notice that as the parametera is
varied the attractor approaches the repeller@Fig. 9~b!# until it
encompasses it@Fig. 9~c!#. The attractor rolls up around th
repeller, developing a structure that has been called ‘‘
funnel’’ @Fig. 9~b!–9~d!#. As seen from the power spectrum
the simple Rossler attractor contains a sharp periodic mo
superimposed on otherwise chaotic behavior. This is ca
phase coherence@12#. As the funnel develops more turns th
phase coherence is lost. We want to clarify the nature
these subtle chaotic bifurcations~i.e., the process of phas
decoherence!, and whether these bifurcations are charact
ized by abrupt or continuous changes.

We integrate Eq.~6! with a fourth-order Runge-Kutta
method and a time step of 0.05, by incrementing the par
eter a from 0.15 to 0.30 by 1.2531026 at each integration
step. This gives a data setx(t) of total length 120 001 points
We use our Algorithm 1 to studyx(t). We computeT̄2(r )
on time seriesx(t) data within episodic windows consistin
of 2000 consecutive points. Sequential windows are shif
by 10 points~thus overlapping by 1990 points!, giving a total
of 11 801 values forT̄2(r ). The result is shown in Fig. 10 a
the very irregular upper curve. For the parameter ran
shown, the curve suggests three periodic windows, as i
cated by arrows and denoted by capital lettersA, B, andC in
the figure. By integrating Eq.~6! with fixed a belonging to
those windows, we find that motions corresponding to th
parameter values are indeed periodic. The existence of th
periodic windows has two important implications:~i! The
development of the funnel@Figs. 9~b! and 9~c!, especially
9~d!# does not follow directly from the simple Rossler attra
tor @Fig. 9~a!#, since these states are separated by perio
windows and~ii ! phase decoherence has to really refer to
variation of chaotic behavior fora belonging to the second
chaotic window, roughly@0.17, 0.24#. This result also com-
pels us to think more carefully what characterizes phase
coherence.

A sharp peak in a power spectrum can be generated
two mechanisms: a perfect periodic signal or a signal w
fixed frequency but varying amplitude. Phase decohere
here refers to the latter case. For example, if one comp
the time elapse between successive maxima of the cha
signalx(t) corresponding toa50.17, then one finds that thi
period is almost a constant. This suggests that we cons
the following time series:u(t)5arctan@x(t1L)/x(t)#, whereL
is chosen to be 15 sampling time interval here. With thisL,
the phase diagram,x(t1L) vs x(t), looks similar to those of
Fig. 9. We then computeT̄2(r ) from u(t). The result is
shown in Fig. 10 as the much regular lower curve. Ve
interestingly, the curve also suggests a periodic window t
is identical to the windowC given byx(t). In order to ex-
amine this curve more clearly, we magnify the segment
aP@0.15,0.24# and replot it as Fig. 11. We find that fora
smaller than 0.177, so long as the phase information is c
cerned, the chaotic motion~for example,a50.15 and 0.17!

rs.
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and the periodic motion~for example,a50.16) are not much
different, sinceT̄2(r ) varies only slightly. The transition
starts arounda50.18, and becomes more dramatic arou
a50.20. Overall, however, the changes are gradual ra
than abrupt. These quantitative features are consistent
those qualitative ones obtained by visually inspecting
phase diagrams and PSD’s of Fig. 9.

As in the transient Lorenz system, we have also obser
that similar results are obtained when different embedd
parameters and scalesr are used, and when the size of th
data subset is 1000 points.

V. CONCLUSIONS

In this paper, we have analyzed a number of interes
dynamical systems to detect nonstationarity and transienc
time series, and to understand various consequences of
stationarity. In particular, we find that nonstationarity in t
metastable chaotic Lorenz system is due to nonrecurre
Nonrecurrence then determines lack of fractal structure in
signal. In 1/f a noise, we find that the correlation dimensio
associated with such noisy processes are local graph dim
sions calculated from sojourn points. While the presence
such dimensions has been considered one of the pitfall
the Grassberger-Procaccia algorithm, we have argued
being able to readily estimate the key parameter for 1f a

FIG. 10. Variation ofT̄2(r ) with the parametera for x(t) ~upper
irregular curve! and u(t) ~lower more regular curve!. The embed-
ding parameters arem53 andL510. The scaler used is 224.
y
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noise should actually be regarded as a merit of the algorit
so long as the danger of interpreting 1/f a noise as determin-
istic chaos is absent.

We have also designed a transient Lorenz system wi
slowly oscillating controlling parameter, and a transie
Rossler system with a slowly linearly increasing parame
with the parameter range covering a sequence of chaotic
namics with increased phase incoherence. State transit
from periodic to chaotic, and vice versa, have been ide
fied, together with different facets of nonstationarity in ea
phase. These results do not depend sensitively on the spe
values for the embedding parameters, the size of the ball,
the length of the data subset, indicating the method shoul
easy to use in practice.

While the main purpose of this paper is to detect st
transitions in experimental situations, the techniques m
also be used to detect the bifurcations of a system when
equations of motion are known. More precisely, when ma
parameters are involved, one may integrate or iterate
equations of motion by continuously varying one or a fe
parameters in every time step, and then study how the
tures of the motion change with time@hence, parameter~s!#.

ACKNOWLEDGMENTS

The author thanks Johnny Lin for proofreading the man
script and correcting the English.

FIG. 11. A magnification of part of the lower more regul
curve of Fig. 10.
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